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Cholecystokinin Switches the Plasticity of GABA Synapses in
the Dorsomedial Hypothalamus via Astrocytic ATP Release
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Whether synapses in appetite-regulatory brain regions undergo long-term changes in strength in response to satiety peptides is poorly
understood. Here we show that following bursts of afferent activity, the neuromodulator and satiety peptide cholecystokinin (CCK) shifts
the plasticity of GABA synapses in the dorsomedial nucleus of the hypothalamus of male Sprague Dawley rats from long-term depression
to long-term potentiation (LTP). This LTP requires the activation of both type 2 CCK receptors and group 5 metabotropic glutamate
receptors, resulting in a rise in astrocytic intracellular calcium and subsequent ATP release. ATP then acts on presynaptic P2X receptors
to trigger a prolonged increase in GABA release. Our observations demonstrate a novel form of CCK-mediated plasticity that requires

astrocytic ATP release, and could serve as a mechanism for appetite regulation.
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ignificance Statement

mechanism by which cholecystokinin regulates appetite.

Satiety peptides, like cholecystokinin, play an important role in the central regulation of appetite, but their effect on synaptic
plasticity is not well understood. The current data provide novel evidence that cholecystokinin shifts the plasticity from long-term
depression to long-term potentiation at GABA synapses in the rat dorsomedial nucleus of the hypothalamus. We also demonstrate
that this plasticity requires the concerted action of cholecystokinin and glutamate on astrocytes, triggering the release of the
gliotransmitter ATP, which subsequently increases GABA release from neighboring inhibitory terminals. This research reveals a
novel neuropeptide-induced switch in the direction of synaptic plasticity that requires astrocytes, and could represent a new

~
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Introduction

Energy intake and expenditure are regulated by a complex neu-
ronal network that integrates incoming nutrient and hormonal
signals and gates neuronal output to maintain homeostasis. The
ability of synapses in this network to undergo long-term changes
in strength in response to various stimuli is emerging as a poten-
tially important contributor to appetite regulation (Zeltser et al.,
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2012). Such plasticity may underlie an individual’s ability to
match energy intake and expenditure and to adapt to changes in
food availability, and has been reported in feeding circuits
throughout the hypothalamus (Pinto et al., 2004; Sternson et al.,
2005; Crosby et al., 2011; Liu et al., 2012; Qi and Yang, 2015).
Within these feeding circuits, the dorsomedial nucleus of the
hypothalamus (DMH) is recognized as a key player in the regu-
lation of appetite (Bellinger and Bernardis, 2002; Otgon-Uul et
al., 2016; Jeong et al., 2017). Although much remains to be eluci-
dated with respect to the identity and distribution of feeding-
related neuropeptides in DMH neurons, it is well established that
the satiety signal and neuromodulator cholecystokinin (CCK) is
expressed in this region (Innis et al., 1979; Micevych et al., 1988;
Otake, 2005; Wagner et al., 2013). Both type 1 CCK receptor
(CCK1R) and type 2 CCK receptor (CCK2R) are also localized in
the DMH, and intra-DMH administration of CCK triggers a
long-lasting, robust suppression of food intake (Blevins et al.,
2000; Chen et al., 2008). This long-lasting effect could be medi-
ated by long-term changes in the strength of synapses in the
DMH. We have previously demonstrated that CCK increases
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GABA release onto DMH neurons (Crosby et al., 2015), but
whether CCK influences the plasticity of these synapses in re-
sponse to bursts of afferent activity remains unknown.

It is well accepted that astrocytes are key players in synaptic
transmission and plasticity (Araque et al., 2014). Many vital roles
of astrocytes are performed in a neuronal activity-dependent
manner, as follows: the clearance of synaptic glutamate (Arm-
bruster et al., 2016); the modulation of basal synaptic transmis-
sion (Panatier etal., 2011); and the release of energy substrates for
neuronal consumption (Michler et al., 2016). Furthermore, as-
trocytes have been implicated in numerous complex behaviors,
including sleep homeostasis (Halassa et al., 2009), the control of
breathing (Gourine et al., 2010), wakefulness (Papouin et al.,
2017), and the regulation of appetite (Kim et al., 2014). Because
CCK2Rs are also expressed on astrocytes (Hosli et al., 1993; Miil-
ler et al., 1997) and CCK enhances astrocytic Ca*>* signaling in
other brain regions (Miiller et al., 1997), we hypothesized that
CCK also influences the synaptic plasticity of DMH neurons
through an astrocyte-dependent pathway.

Here we report that CCK shifts the plasticity of GABA syn-
apses from long-term depression (LTD) observed under basal
conditions to long-term potentiation (LTP). This LTP is presyn-
aptic and requires the activation of CCK2Rs that act in concert
with group 5 metabotropic glutamate receptors (mGluR5s) on
astrocytes to trigger a rise in intracellular calcium and a release of
the gliotransmitter ATP. ATP subsequently acts on purinergic
receptors on GABA afferents to enhance GABA release.

Materials and Methods

Animals. All experiments were performed using male Sprague Dawley
rats [postnatal day 21 (P21) to P30] obtained from Charles River Labo-
ratories (Rat Genome Database catalog #734476; RRID:RGD_734476) or
transgenic mice that were a heterozygous cross between a cre-dependent
GCaMP3 line [International Mouse Strain Resource (IMSR) catalog
#JAX:014538; RRID:IMSR_JAX:014538) and a tamoxifen-inducible
(ERT?2) astrocyte-specific glutamate aspartate transporter (GLAST) pro-
moter (IMSR catalog #JAX:012586; RRID:IMSR_JAX:012586). Two
weeks before the imaging experiments, mice received three consecutive
tamoxifen injections (100 mg/kg, 10 mg/ml corn oil stock). Animals were
maintained in specified pathogen-free conditions on a 12 h light/dark
cycle at 22°C with food and water available ad libitum. All experimental
protocols were performed in accordance with guidelines established
by the Canadian Council on Animal Care, with approval from the
University of Calgary and Mount Allison University Animal Care and
Use Committees.

Brain slice preparation. Animals were anesthetized with isoflurane and
decapitated, and their brains were quickly removed and placed in ice-
cold slicing solution containing the following (in mm): 87 NaCl, 2.5 KCl,
25 NaHCO;, 0.5 CaCl,, 7 MgCl,, 1.25 NaH,PO,, 25 glucose, and 75
sucrose saturated with 95%/5% O,/CO,. Angled horizontal slices (250
um) containing the DMH were obtained using a vibrating slicer (Leica),
and slices were incubated in 32.5°C artificial CSF (aCSF) containing the
following (in mm): 126 NaCl, 2.5 KCI, 26 NaHCO,, 2.5 CaCl,, 1.5 MgCl,,
1.25 NaH,PO,, and 10 glucose saturated with 95%/5% O,/CO, for a
minimum of 60 min. Slices remained in this incubation chamber until
recording commenced.

Electrophysiology. Hypothalamic slices were submerged in a recording
chamber and superfused with 32.5°C aCSF at a flow rate of 1 ml/min.
DMH neurons in the compact zone were identified and visualized with
an Olympus upright microscope fitted with infrared differential interfer-
ence contrast optics. Whole-cell electrophysiological recordings were ob-
tained using borosilicate glass microelectrodes (tip resistance, 4.0—6.0
MQ) filled with an intracellular solution containing the following (in
mM): 116 potassium gluconate, 8 NaCl, 2 MgCl,, 8 KCI, 1 potassium
EGTA, 4 potassium ATP, 0.3 sodium GTP, and 10 HEPES, corrected to
pH 7.2 with KOH. In a subset of experiments, GDPBS (1 mm) was in-
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cluded in the intracellular solution and sodium GTP was removed to
disrupt G-protein signaling. Recordings were accepted for analysis if
changes in access resistance were <15%. Electrophysiological signals
were amplified using the Multiclamp700B amplifier (Molecular De-
vices), low-pass filtered at 1 kHz, digitized at 10 kHz using the Digidata
1322 system (Molecular Devices), and stored for off-line analysis.

Evoked IPSCs were isolated by holding the postsynaptic neuron at
—70 mV and by including DNQX (10 uMm) in the perfusate to block
AMPA and kainate receptor-mediated glutamatergic transmission.
GABAergic fibers were stimulated extracellularly with a patch pipette
filled with aCSF and positioned ~50—100 um lateral to the recorded
DMH neuron. IPSCs were evoked at a rate of 0.2 Hz, and paired-pulse
responses were obtained by applying a pair of synaptic stimuli 50 ms
apart.

In high-frequency stimulation (HFS) experiments, afferents were
stimulated at 100 Hz for 4 s, repeated twice, 20 s apart in current-clamp
mode. This protocol has been previously used to study activity-
dependent plasticity in the DMH (Crosby et al., 2011). In a subset of
experiments, slices were incubated in fluorocitric acid (100 um) for 120
min following the 60 min recovery incubation in aCSF and before re-
cording. Fluorocitric acid disrupts cellular metabolism preferentially in
glial cells (Swanson and Graham, 1994), and thus is a common tool used
to target and inhibit these cells. Fluorocitric acid was dissolved in aCSF
containing 1.5 mm MgSO, in place of the same concentration of MgCl,
to facilitate its dissolution. The mixture was sonicated at 30°C for 60 min
and then filtered using a 0.45 um filter before slice incubation.

Data analysis. Evoked currents were analyzed using Clampfit 9
(pClamp, Molecular Devices; RRID:SCR_011323). The amplitude of the
synaptic current was calculated from the baseline (current immediately
before the evoked response) to the peak of each evoked response. Mean
IPSC amplitudes (in 30 s epochs) were compared by expressing current
amplitudes as a percentage of the current amplitudes obtained during the
baseline recording period within each cell. The paired pulse ratio (PPR)
was calculated by dividing the second peak amplitude by the first peak
amplitude and is expressed in 1 min epochs as a percentage of the PPR
from the baseline recording period within each cell. For clarity, the stim-
ulus artifacts have been digitally removed from the traces depicted. IPSC
traces in all figures depict IPSCs averaged from the 5 min period imme-
diately before (baseline) and 10—20 min after HES, with the exception of
the ATP+S experiment in which traces are averaged during slice incuba-
tion in ATP+S.

Spontaneous IPSCs (sIPSCs) that were observed in the intervals be-
tween consecutive applications of synaptic stimuli were analyzed using
Mini Analysis software (Mini Analysis Program, Synaptosoft; RRID:
SCR_002184). The threshold for the detection of sIPSCs was five times
the root mean square noise. sIPSC frequency was measured in events per
minute, and amplitude was measured as the average amplitude in 1 min
bins.

Calcium imaging. Calcium imaging was performed on transgenic mice
expressing GCaMP3 under the astrocyte-specific GLAST promoter
(GLAST-CreERT X LSL-GCaMP3). Brain slices of the DMH were pre-
pared as described above. Fluorescence imaging was performed on a
custom two-photon laser-scanning microscope (Rosenegger et al., 2014)
equipped with a Ti:Sapph laser (~4 W average power, 670—1080 nm,
Coherent; Ultra II), objectives (40X; numerical aperture, 1.0; Zeiss), a
green bandpass emission filter (525-40 nm), an orange/red bandpass
emission filter (605-70 nm), and associated photomultiplier tubes
(GaAsP, Hamamatsu). Time-series images, to assess fluctuations in in-
tracellular astrocyte calcium, were acquired at a single focal plane using
bidirectional scanning (512 pixels® at 1 Hz frame rate). Astrocyte cal-
cium regions of interest (ROI) were detected in a semiautonomous man-
ner using the GECIquant plugin for Image] (ImageJ; RRID:SCR_003070;
Srinivasan et al., 2015). Once the ROI detection module was launched,
we used an area range of 30 um? to infinity for the detection of astrocyte
soma, and 0.2-5 wm? for the detection of microdomain calcium. We
visually verified the detected ROIs in each individual case. For ROI de-
tection, GECIquant generated a temporal maximum intensity projec-
tion, which was then manually thresholded. Using this thresholded
image, GECIquant automatically detected ROIs and added them to Im-
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age] ROI Manager. Intensity values for each ROI were extracted, con-
verted to dF/F (fluorescence intensity change/basal fluorescence
intensity) values, and analyzed using Mini Analysis (Mini Analysis Pro-
gram; RRID:SCR_002184) to detect and measure amplitude, half-width,
and frequency values for the somatic and microdomain calcium
transients.

Experimental design and statistical analysis. All grouped data consisted
of neuronal or astrocytic recordings from a minimum of three rats
(transgenic mice for GCamP3 experiments) from two or more different
litters. For all neuronal recordings, statistics were performed on baseline
measurements taken during the 5 min before HFS and 10-20 min fol-
lowing HFS (or during the 10 min ATP+S incubation). Results are ex-
pressed as the mean * SEM. All data were tested for normality, and
significance was determined using two-tailed paired  tests for IPSC am-
plitude, PPR, coefficient of variation (CV), and spontaneous frequency
and amplitude data. Multiple groups were compared using a one-way
ANOVA with Tukey’s post-test. To assess significance for astrocyte cal-
cium data, we performed paired t tests comparing spontaneous calcium
fluctuations in individual astrocytes before and after the application of
CCK. Data were considered significant at p < 0.05.

Results

CCK shifts the plasticity of GABA synapses from LTD to LTP
in response to HFS

To determine whether CCK shifts the plasticity of GABA syn-
apses in the DMH, we obtained recordings from neurons in the
compact zone of the DMH in slices from male Sprague Dawley
rats, as described previously (Crosby et al., 2011, 2015; Fig. 1A).
We first examined the effect of HFS of GABA inputs onto DMH
neurons in the absence of CCK. Consistent with our previous
findings (Crosby et al., 2011), HFS (100 Hz for 4 s X2, 0.05 Hz
interval) elicited an LTD of GABA synapses, as assessed by exam-
ining the amplitude of evoked IPSCs (baseline, 87.38 *+ 9.18 pA;
post-HFS, 38.60 = 11.90 pA; n = 6;t = 3.71; p = 0.014. paired ¢
test; Fig. 1B). This depression was not accompanied by a signifi-
cant change in PPR (baseline, 1.07 = 0.10; post-HFS, 1.18 % 0.09;
n = 6;t= 1.05; p = 0.33, paired ¢ test) or CV (baseline, 0.53 =
0.06; post-HFS, 0.73 = 0.16; n = 6; t = 1.14; p = 0.30, paired ¢
test), which, again, is consistent with our previous results.

To determine whether CCK can shift the direction of plasticity
of these synapses, we repeated the above experiment, but with
slices continuously incubated in sulfated CCK octapeptide (here-
after referred to as CCK; 0.1 M for at least 10 min before record-
ings). In the presence of CCK, HES elicited a robust and long-lasting
potentiation of GABA synapses (referred to as LTP; baseline,
61.34 = 17.84 pA; post-HEFS, 129.3 £ 19.50 pA; n = 6; t = 8.84;
p = 0.0003, paired ¢ test; Fig. 1C,D). We next examined the locus
of this plasticity by assessing the PPR and CV of GABA synapses,
as well as the frequency and amplitude of sSIPSCs. LTP - was
accompanied by a decrease in the PPR (baseline, 0.90 = 0.05;
post-HFS, 0.77 = 0.07; n = 6; t = 2.90; p = 0.03, paired ¢ test; Fig.
1E) and CV (baseline, 0.15 = 0.02; post-HFS, 0.09 = 0.01; n = 6;
t=4.11; p = 0.009, paired t test; Fig. 1E), and an increase in the
frequency of sIPSCs (baseline, 3.81 * 1.26 Hz; post-HFS, 7.42 =
2.30 Hz; n = 6; t = 3.00; p = 0.03, paired ¢ test; Fig. 1F), but no
change in the amplitude (baseline, 13.86 = 1.44 pA; post-HFS,
15.05 * 1.33 pA; n = 6;t = 1.61; p = 0.17, paired ¢ test; Fig. 1F).
Together, these findings strongly suggest that CCK shifts the di-
rection of plasticity from LTD to LTP, which is mediated by an
increase in GABA release from the presynaptic terminal, rather
than by altering postsynaptic receptor activity or expression.

LTPck requires CCK2R activation
We next determined the mechanism underlying the LTP trig-
gered by CCK. There are two CCK receptor subtypes, CCK1R and
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CCK2R, both of which are expressed in the DMH (Gaudreau et
al., 1983; Durieux et al., 1988; Bi et al., 2004). To test whether
CCK2R activation is necessary for LTP, we incubated slices in
the CCK2R-specific antagonist LY-225910 (1 uMm) and delivered
HES in the presence of CCK. Under these conditions, HFS failed
to elicit LTP ok (baseline, 71.36 = 15.71 pA; post-HFS, 70.49 =
15.80 pA; n = 8; t = 0.13; p = 0.90, paired t test; Fig. 2A). As
expected, no changes in PPR (baseline, 1.02 = 0.08; post-HFS,
1.01 £ 0.05; n = 8 t = 0.28; p = 0.78, paired ¢ test) or CV
(baseline, 0.41 = 0.06; post-HFS, 0.35 * 0.04; n = 8;t = 0.99; p =
0.35, paired t test) were observed. To further confirm that
CCK2Rs mediate LTP -, we blocked CCK1Rs with the selective
antagonist lorglumide (1 uMm) and repeated the HFS in the pres-
ence of CCK. Blockade of CCK1Rs had virtually no effect on the
ability of synapses to undergo LTP in the presence of CCK (base-
line, 54.02 = 14.13 pA; post-HFS, 84.09 = 17.99 pA; n = 8; ¢t =
4.02; p = 0.005, paired ¢ test; Fig. 2B). Similarly, we observed a
trend toward a decrease in PPR (baseline, 1.00 = 0.09; post-HFS,
0.86 = 0.06; n = 8 r = 1.96; p = 0.09, paired ¢ test), and a
significant decrease in CV (baseline, 0.37 * 0.05; post-HFS,
0.25 = 0.03; n = 8 t = 2.63; p = 0.03, paired ¢ test) was still
observed following the blockade of CCK1Rs.

Our data thus far indicate that in the presence of CCK, HFS
elicits LTP ¢ that requires CCK2R activation and is mediated by
an increase in GABA release from the presynaptic terminal. Be-
cause we have previously shown that nitric oxide (NO) can im-
pact GABA release at these synapses (Crosby et al., 2011), we
tested whether NO could be implicated in this plasticity. Surpris-
ingly, the blockade of NO production with the NO synthase in-
hibitor L-NAME (200 uMm) did not affect the potentiation of
GABA synapses following HFS in the presence of CCK (baseline,
76.72 = 12.14 pA; post-HFS, 123.20 £ 24.49 pA; n = 8;t = 2.55;
p = 0.03, paired ¢ test; Fig. 2C). We also observed a trend toward
a decrease in PPR (baseline, 0.92 = 0.07; post-HFS, 0.77 %+ 0.06
pA; n = 8t = 2.11; p = 0.07, paired ¢ test) and a significant
reduction in CV (baseline, 0.30 = 0.03; post-HFS, 0.19 = 0.03
PA;n = 8;t=2.66; p = 0.03, paired t test). These data suggest that
NO does not mediate the plasticity triggered by CCK in the
DMH. To determine whether another unidentified modulator is
released by CCK2Rs localized postsynaptically, we examined the
impact of HFS on GABA signaling in the presence of CCK with
GDP§BS (1 mm) included in the patch pipette to disrupt postsyn-
aptic G-protein signaling coupled to the CCK2R. In the presence
of CCK with GDPgS in the patch pipette, the potentiation of
GABA synapses was still observed following HFS of afferents
(baseline, 106.9 £ 32.19 pA; post-HFS, 166.7 = 44.02 pA; n = 6;
t = 4.57; p = 0.006, paired ¢ test; Fig. 2C), but with no significant
changes in PPR (baseline, 1.25 = 0.20; post-HFS, 1.17 = 0.23;
n = 6;t= 0.66; p = 0.54, paired t test) or CV (baseline, 0.37 *
0.05; post-HFS, 0.32 = 0.07; n = 6; t = 1.60; p = 0.17, paired ¢
test). We further analyzed these data to determine whether the
magnitude of the plasticity was dampened when L-NAME or
GDPS was applied in addition to CCK. A one-way ANOVA with
Tukey’s post-test revealed no significant difference in IPSC am-
plitude following HFS in CCK-treated slices compared with
L-NAME plus CCK (p > 0.05) and GDPS plus CCK (p > 0.05).

Astrocytes mediate LTP

It is possible that the activation of CCK2Rs on neighboring astro-
cytes might trigger the release of a gliotransmitter that acts on the
presynaptic terminal to stimulate GABA release. CCK2Rs are lo-
calized on astrocytes in other brain regions (Hosli et al., 1993;
Miiller et al., 1997), and activation of this receptor subtype on
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Figure1.  CCKshifts the plasticity of GABA synapses from LTD to LTP. 4, Schematic of DMH illustrating the approximate position of recording and stimulating electrodes in the compact zone ((Z)
of the DMH (f, fornix; 3V, third ventricle). B, Sample traces of averaged IPSCs before (baseline; black trace) and after (post-HFS; gray trace) HFS of afferents (top), and summary data showing a
long-lasting reduction in IPSC amplitude (bottom; n = 6; 46.8 = 13.8% of baseline). Calibration: 50 pA and 10 ms. Amplitude values were assessed during the (Figure legend continues.)
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Figure2.  CCK2R activation is necessary for LTP . A, Sample traces of averaged IPSCs before and after HFS (top), and summary data showing that LTP . is completely abolished with the CCK2

receptor antagonist LY-225910 (bottom; 1 um; n = 8;100.2 == 11.36% of baseline). B, Sample traces of averaged IPSCs before and after HFS (top) and summary data showing that LTP is not
prevented with the CCK1R antagonist, lorglumide (bottom; 1 um; n = 8;176.4 == 18.96% of baseline). The horizontal black bar indicates the mean. **p > 0.01. ¢, Summary data of the percentage
changein IPSCamplitude from baseline in control slices and in the presence of CCK alone (0.1 w; n = 6;252.2 = 38.2% of baseline) or with CCK and the following: L-NAME (200 um; n = 8;160.7 =
20.99% of baseline) or GDP3S (1 mm; n = 6; 165.0 == 14.42% of baseline) in the patch pipette. *p > 0.05, **p > 0.01, ***p > 0.001 compared with baseline for each group.

cultured astrocytes has been shown to trigger increases in intra-
cellular Ca®" (Miiller et al., 1997) that are necessary for gliotrans-
mitter release. To test the hypothesis that astrocytes are necessary
for LTP -k, we repeated HFS in the presence of CCK in slices that
had been incubated in the gliotoxin fluorocitric acid. Fluorocitric
acid is a toxin preferentially taken up by glial cells that interferes
with the citric acid cycle and therefore disrupts intracellular pro-
duction of ATP (Swanson and Graham, 1994). In fluorocitric
acid-treated slices in the presence of CCK, HFS failed to elicit
LTP.ck (baseline, 68.15 = 20.44 pA; post-HFS, 44.07 * 14.56
pA;n = 8;t=1.87; p = 0.10, paired ¢ test; Fig. 3A) or changes in
PPR (baseline, 1.02 = 0.11; post-HFS, 1.18 £ 0.13; n = 8; t =
1.44; p = 0.20, paired ¢ test) or CV (baseline, 0.37 = 0.04; post-
HFS, 0.42 = 0.06; n = 8; t = 0.98; p = 0.36, paired t test). We next
tested whether CCK could trigger a rise in calcium from DMH
astrocytes in acute brain slices, because previous data were
obtained from dissociated astrocyte cultures and not from astro-
cytes in situ (Miiller et al., 1997). Spontaneous calcium dynamics
in astrocytes were measured using GLAST-CreERT LSL-GCaMP3
mice (Fig. 3B—E). We observed that the application of CCK in-

<«

(Figure legend continued.) 5 min before HFS (baseline) and 10 —20 min following HFS (post-
HFS). Arrow indicates the time of HFS. C, Sample traces of averaged IPSCs before (baseline; black
trace) and after HFS (post-HFS; red trace; top) in a representative cell showing a long-lasting
potentiation in IPSC amplitude in the presence of CCK (0.1 wum; bottom). D, Summary data
showing LTP following HFS in the presence of CCK (n = 6; 252.2 = 38.2% of baseline).
E, Summary PPR data (left) and CV data (right) showing a decrease following HFS in CCK-treated
slices. The horizontal black bar indicates the mean. F, Sample traces of spontaneous IPSCs
before (baseline; black trace) and after HFS (post-HFS; red trace) in the continuous presence of
(CK and summary data showing an increase in sIPSC frequency, but no change in amplitude
following HFS in CCK-treated slices. Calibration: 25 pA and 0.5 s. *p > 0.05.

duced an increase in both amplitude (baseline, 0.74 % 0.02 dF/F;
CCK, 0.81 = 0.02 dF/F; n = 115 t = 2.30; p = 0.04, paired t test;
Fig. 3F) and frequency (baseline, 1.41 = 0.12 events/min; CCK,
1.71 £ 0.15 events/min; n = 11; t = 2.63; p = 0.03, paired ¢ test;
Fig. 3G) without any effect on the duration of astrocyte calcium
events in microdomains (half-width; baseline, 1.58 * 0.17 s;
CCK, 1.59 £ 0.07 s; n = 115t = 0.04; p = 0.97, paired ¢ test; data
not shown).

Collectively, these findings support the hypothesis that
CCK2Res, activated by bath-applied CCK, are localized on neigh-
boring astrocytes and liberate a gliotransmitter that enhances
GABA release from incoming afferents.

mGluR5 activation is required for LTP ¢

We have previously demonstrated that glutamate plays an inte-
gral role in LTP at GABA synapses in the DMH (Crosby et al.,
2011). In addition, group I metabotropic glutamate receptors,
particularly mGlIuR5s, are localized on astrocytes, and their acti-
vation triggers a significant rise in intracellular Ca®" within these
cells (van den Pol et al., 1995; Nakahara et al., 1997; Cai et al.,
2000; Panatier et al., 2011; Mehina et al., 2017). We therefore
hypothesized that the excess glutamate resulting from HFS acti-
vates mGluR5s secondary to CCK2R activation, ultimately ele-
vating astrocytic Ca>™ to sufficient levels to trigger the release of
a gliotransmitter. To determine whether mGluR5 activation is
required for LTP -, we first delivered HFS to slices in the pres-
ence of CCK and the nonselective group I mGluR antagonist
MCPG [(RS)-a-Methyl-4-carboxyphenylglycine; 200 um]. This
resulted in a significant reduction in IPSC amplitude (baseline,
87.13 £ 4.67 pA; post-HFS, 39.01 = 8.67 pA;n =65t = 8.37;p =
0.0004, paired ¢ test; Fig. 4A), with no change in PPR (baseline,
1.01 £ 0.09; post-HFS, 0.82 = 0.08; n = 6; t = 1.97; p = 0.10,
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paired t test) or CV (baseline, 0.26 = 0.04;
post-HFS, 0.26 £ 0.03; n = 6; t = 0.04;
p = 0.96, paired t test). We next examined
the effect of the selective mGluR5 antago-
nist MTEP (3-[(2-methyl-1,3-thiazol-4-
yl)ethynyl]pyridine; 10 um) on the ability
of GABA synapses to potentiate in re-
sponse to HFS in the presence of CCK. Under
these conditions, HFS failed to elicit
LTP,ck and instead triggered LTD (base-
line, 90.79 £ 8.84 pA; post-HFS, 48.19 =
8.80 pA; n = 6; t = 3.64; p = 0.02, paired
t test; Fig. 4B), with no change in PPR
(baseline, 1.17 = 0.10; post-HFS, 1.15 *
0.10; n = 6; t = 0.52; p = 0.65, paired ¢
test) or CV (baseline, 0.37 = 0.04; post-
HES, 0.25 £ 0.06; n = 6;t = 1.29; p =
0.26, paired f test). Together, these data
provide evidence of the necessity of
mGluR5s in the potentiation of GABA
synapses in the DMH. Next, to determine
whether the activation of mGluR5s is suf-
ficient to trigger LTP, we examined the
effect of HFS in the presence of the
mGIluR5 agonist DHPG [(RS)-3,5-Dihy-
droxyphenylglycine; 50 um]. DHPG alone
was not sufficient to trigger LTP in re-
sponse to HFS and instead resulted in
LTD, which is reminiscent of the plasticity
observed under control conditions (base-
line, 70.93 = 10.63 pA; post-HFS, 29.44 +
8.04 pA; n = 6;t = 4.04; p = 0.009, paired
t test; Fig. 4C). As with the control condi-
tion, no changes in PPR (baseline, 1.43 =
0.34; post-HEFS, 1.50 = 0.40; n = 6;t =
0.66; p = 0.54, paired t test) or CV (base-
line, 0.42 = 0.34; post-HEFS, 0.65 = 0.16;
n=6;t=1.71; p = 0.14, paired ¢ test)
were observed.

ATP-induced activation of presynaptic
P2X receptors is required for LTP ¢
Having determined that astrocytes are re-
quired for LTP, we next asked whether
the activation of CCK2Rs and mGluR5s
on astrocytes triggers the release of a
transmitter that acts at the GABA terminal
to stimulate release. ATP is a prominent
gliotransmitter that modulates synaptic
transmission at numerous CNS synapses
through the activation of presynaptic P2X
receptors (Fuand Poo, 1991; Sperlagh and
Vizi, 1991; Rogers et al., 1997). To test
the hypothesis that ATP is required for
LTP,ck, we first examined whether the
blockade of purinergic receptors prevents
the CCK-induced potentiation of GABA
synapses. PPADS (pyridoxalphosphate-6-
azophenyl-2',4"-disulfonic acid), a nonse-
lective P2X purinergic receptor antagonist
(30 wm) completely abolished the poten-
tiation of IPSCs (baseline, 52.18 * 2.45
pA; post-HFS, 26.80 = 4.65pA;n=6;t =
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Figure3.  Astrocytesare necessary for LTP,. A, Sample traces of averaged IPSCs before and after HFS (top), and summary data
showing the depression of GABA synapses in slices incubated in fluorocitric acid in the presence of CCK (bottom; 100 m; n = 8;
75.4 = 17.5% of baseline). B, Example image of GCaMP3-expressing astrocytes in the dorsomedial hypothalamus. Scale bar, 10
m. G, D, Average intensity of field of view before (baseline; ) and after CCK application (0.1 wm; D). Scale bar, 10 wm. E, Example
traces of astrocytic intracellular calcium before and after CCK application. Calibration: 0.2 dF/F and 2 min. F, CCK application
increased the amplitude of individual calcium events in astrocytes (n = 11). G, CCK application increased the frequency of
individual calcium events in astrocytes (n = 11). The horizontal black bar indicates the mean. *p > 0.05.
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*p > 0,05, **p > 0.01, ***p > 0,001.

4.80; p = 0.005, paired ¢ test; Fig. 5A, B) and the decrease in PPR
(baseline, 1.10 = 0.15; post-HES, 1.15 + 0.16; n = 6; t = 0.49; p =
0.64, paired ¢ test) and CV (baseline, 0.32 = 0.04; post-HFS,
0.30 = 0.07; n = 65t = 0.45; p = 0.67, paired t test) observed with
CCK. To confirm that ATP is both necessary and sufficient for
LTP,ck, we applied an analog of ATP, ATP%S, to slices and ex-
amined the effect on IPSCs. ATP+S (100 um) potentiated GABA
synapses (baseline, 69.62 = 13.54 pA; ATP+S, 126.0 * 19.12 pA;
n=6;t=4.37;p = 0.007, paired t test; Figs. 5C,D) and decreased
PPR (baseline, 1.01 = 0.11; ATPS, 0.86 = 0.07; n = 6; t = 2.86;
p = 0.03, paired ¢ test) and CV (baseline, 0.41 * 0.06; ATP+S,
0.37 £ 0.09; n = 6; t = 0.56; p = 0.60, paired ¢ test). Collectively,
these data suggest that ATP is released from astrocytes and acti-
vates presynaptic P2X receptors on GABA terminals to facilitate
release.

Discussion

Here we report that CCK shifts the polarity of plasticity of GABA
synapses in the DMH from LTD to LTP. This potentiation is
mediated by an increase in the probability of GABA release from
presynaptic terminals and requires the activation of CCK2Rs and
mGluR5s. We propose that the activation of these receptors on
astrocytes triggers a rise in intracellular Ca*™ that stimulates the
release of ATP. ATP subsequently activates P2X receptors at
GABA terminals to enhance release (Fig. 6). Our findings indicate
a new mechanism by which CCK modulates the plasticity of
GABA synapses in the DMH.

We show that CCK shifts the polarity of plasticity in response
to bursts of afferent activity, such that GABA synapses exhibit
LTP, as opposed to LTD. Although CCK has been previously
shown to modulate GABA release in the DMH (Crosby et al.,
2015) and other brain regions (Deng and Lei, 2006; Chung and
Moore, 2007; Karson et al., 2008; Mitchell et al., 2011), this is the
first example of a CCK-induced shift in the direction of plasticity.
The physiological consequences of this shift from LTD to LTP are
not yet known. CCK is a potent satiety peptide; microinjection of

CCK into the DMH triggers a long-lasting inhibition of food
intake (Blevins et al., 2000; Chen et al., 2008). Although the
underlying mechanisms of this anorexigenic effect are not com-
pletely understood, one possible mechanism might be a CCK-
induced potentiation of GABA release onto orexigenic neurons
in the DMH. Indeed, there is accumulating evidence that differ-
ent populations of neurons in the DMH promote food intake,
including GABAergic (Otgon-Uul et al., 2016) and cholinergic
(Jeong et al., 2017) neurons. In addition to appetite regula-
tion, the DMH is also a key player in the regulation of the stress
response (Crosby and Bains, 2012; Stamper et al., 2015), and
compelling evidence links CCK2R activity with activation of
the hypothalamic—pituitary—adrenal axis (Abelson and
Young, 2003; Malendowicz et al., 2003). Thus, the plasticity
reported here could also play a role in modulating the stress
response.

The present data reveal a novel mechanism by which CCK
enhances GABA release onto DMH neurons. CCK has previously
been shown to modulate GABA release at these synapses. Specif-
ically, we have reported that basal CCK activates postsynaptic
CCK2Rs, leading to enhanced NMDAR function and subsequent
NO-mediated potentiation of GABA release (Crosby et al., 2015).
These distinct mechanisms by which CCK can increase GABA
function under basal conditions and following HES could poten-
tially represent different magnitudes of inhibition of orexigenic
neurons in the DMH, thus influencing feeding behavior.

Our data suggest that CCK2R activation is necessary for LTP.
This is consistent with our recent report illustrating that basal
CCK enhances GABA release onto DMH neurons through a
CCK2R-dependent mechanism (Crosby et al., 2015). Although
CCK2R blockade abolished the LTP¢g, LTD was also not ob-
served. It is possible that CCK1R activation may slightly enhance
GABA release such that LTD is not observed, but our data suggest
that this receptor subtype does not contribute significantly to the
potentiation of GABA synapses reported in this study. Both
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ATP-induced activation of presynaptic P2X receptors is required for LTP . A, Sample traces of averaged IPSCs before and after HFS (top) in a representative cell (bottom) showing a

long-lasting depressionin IPSCamplitude in the presence of CCK and the P2X receptor antagonist PPADS (30 wum). B, Summary data showing depression in IPSCs following HFS in the presence of CCK
and PPADS (n = 6;51.9 = 9.1% of baseline). C, Sample traces of averaged IPSCs before and during incubation with the ATP analog ATP+S (100 wum; top) in a representative cell (bottom) showing
the potentiation of IPSCamplitude with ATP+S. D, Summary data showing the potentiation of GABA synapses with ATP-yS (n = 6; 194.1 = 27.6% of baseline). The shaded region represents the

time and duration of ATP+S application to the slice.

CCKI1Rs and CCK2Rs are expressed in the DMH (Gaudreau et
al., 1983; Durieux et al., 1988; Bi et al., 2004); however, the phys-
iological roles of these receptors in this region are not entirely
understood. There is some evidence that DMH CCK1Rs may be
important in regulating food intake. In rats lacking CCK1Rs
(OLETF rats), neuropeptide Y is overexpressed in the DMH (Bi et
al., 2001) and has been suggested to contribute to hyperphagia in
this animal model. Replenishment of CCK1Rs specifically in the

DMH in OLETF rats, however, does not significantly affect food
intake, although it does normalize meal patterns and glucose
homeostasis (Zhu et al., 2012). Although less is known about
CCK2Rs in the DMH, it is possible that this receptor subtype is
also important in appetite regulation. Indeed, CCK2R knock-out
mice have been shown to develop obesity due to hyperphagia
(Clerc et al., 2007). The endogenous source of the CCK available
to bind to CCK2Rs is currently unknown. It is possible that the
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Schematic representation of the proposed mechanism, as follows: 1, In the presence of CCK, CCK2Rs are activated on astrocytes; 2, HFS triggers the release of glutamate from

neighboring neurons, leading to the activation of mGluR5Rs on astrocytes; 3, the synergistic action of CCK2Rs and mGIuR5s on astrocytes causes a release of calcium from intracellular stores, resulting
in the release of ATP; and 4, ATP binds to P2XRs on GABA terminals, causing a prolonged increase in GABA release onto DMH neurons.

source is from DMH neurons, as we have previously reported
that somatodendritic release of CCK from DMH neurons occurs
following repetitive depolarization of these neurons (Crosby et
al., 2015).

The present data strongly suggest that astrocytes mediate
LTPock. Astrocytes are key players in synaptic plasticity
(Verkhratsky and Nedergaard, 2018), modulating synaptic func-
tion through the release of gliotransmitters including glutamate,
D-serine, and ATP (Araque et al., 2014). Release of these trans-
mitters, which are in turn modulated by activation of a wide
range of membrane-bound receptors, including mGluR5s, is
largely regulated by fluctuations in intracellular Ca** (Panatier
and Robitaille, 2016). Here, we report that CCK elevates astro-
cytic calcium levels and that both mGluR5s and CCK2Rs are
required for LTPcx. We propose that these receptors are local-

ized on astrocytes, as has been reported previously (Hosli et al.,
1993; Miiller et al., 1997) and that their activation enhances in-
tracellular Ca*" concentrations and liberates ATP. Consistent
with this idea, the gliotoxin fluorocitric acid completely abol-
ished LTP, and we observed a CCK-induced increase in the
frequency and amplitude of calcium events in astrocytes in the
DMH. Consistent with our findings, other reports have indicated
that the activation of CCK2Rs mobilizes astrocytic Ca** from
intracellular stores (Miiller et al., 1997) and mGluR5 activation
triggers Ca”™ events that result in the release of purines, influenc-
ing synaptic transmission (Panatier et al., 2011).

We have demonstrated that both mGluR5s and CCK2Rs are
required for LTPy, but the link between these receptors re-
mains elusive. Because slices are first exposed to CCK and later
glutamate following HES in this study, it is possible that the acti-
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vation of CCK2Rs by CCK results in the priming of mGluRS5s.
Such priming would increase mGluR5 activity, and this, in com-
bination with HFS-induced elevations in extracellular glutamate,
would trigger a sufficient elevation in intracellular Ca** to ulti-
mately release ATP. Both receptors are coupled to G, proteins;
thus, their activation generates diacylglycerol and inositol 1,4,5-
triphosphate, which activate protein kinase C (PKC) and release
Ca’* from intracellular stores, respectively. PKC has been shown
to phosphorylate mGluRS5s, leading to enhanced activity (Kim et
al., 2005). It is therefore possible that CCK2R activation and sub-
sequent elevations in PKC enhance mGluR5 activity. Our obser-
vation that the mGluR5 agonist DHPG is not sufficient to trigger
LTP following HES further points to an important role for CCK
and indicates that there is a potential synergistic, rather than
additive, effect of CCK2Rs and mGluRS5s.

We provide evidence that ATP signaling at P2X receptors is
necessary for LTPcx. There is widespread evidence that astro-
cytes release ATP in response to elevations in intracellular Ca**
(Zhang et al., 2003; Pascual et al., 2005; Serrano et al., 2006;
Gourine et al., 2010; Covelo and Araque, 2018) and that ATP can
activate presynaptic P2X receptors to increase the probability of
neurotransmitter release from various synapses (Fu and Poo,
1991; Sperlagh and Vizi, 1991; Barros-Barbosa et al., 2018), in-
cluding GABAergic synapses in the hypothalamus (Vavra et al.,
2011; Bhattacharya et al., 2013; Haam et al., 2014). Although
postsynaptic P2X receptors can also modulate synaptic transmis-
sion (Pankratov et al., 2002; Gordon et al., 2005, 2009; Baxter et
al., 2011; Ferreira-Neto et al., 2015), our data are consistent with
a presynaptic locus of these receptors.

Overall, the data presented here present a novel form of
activity-dependent synaptic plasticity mediated by CCK in DMH
neurons and provide the first demonstration of CCK-induced
modulation of synaptic plasticity by astrocytes in response to
bursts of afferent activity. Future studies will examine the func-
tional implications of this plasticity, with a particular focus on the
satiety effects of CCK. In addition, targeted genetic studies aimed
at elucidating the functional role of astrocytic CCK2Rs will also
contribute to our understanding of the actions of CCK in the
brain. Finally, because these experiments were conducted in
young, male rats, and age and sex can influence the physiology of
eating, including CCK expression and sensitivity (Akimoto and
Miyasaka, 2010; Asarian and Geary, 2013), future work can in-
vestigate whether this plasticity persists across different ages and
sexes.
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