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Abstract
An organism's response to stress requires activation of multiple brain regions. This can have

long-lasting effects on synaptic transmission and plasticity that likely provide adaptive benefits.

Recent evidence implicates not only neurones, but also glial cells in the regulation of the central

response to stress. Intense, repeated or uncontrolled stress has been implicated in the emer-

gence of multiple neuropsychiatric conditions. Human studies have consistently observed glial

dysfunction in mood and stress disorders such as major depression. Interestingly animal models

of stress have recapitulated glial abnormalities that are comparable to the human condition, vali-

dating the use of rodent models for the study of stress disorders. In this review we will focus

upon one family of glia, the astrocytes, and describe the evidence to date that links astrocytes

to possible stress-related disorders.

1 | INTRODUCTION

All organisms experience stress. How the brain responds to stress is

critical for survival; how it adapts to stress ensures that individuals learn

from experiences and respond more effectively in the future. Although

crucial for survival, the response to stress can also have negative conse-

quences on brain health. For example, acute, intense stress, or trauma

can produce deficits in learning and memory recall. Repeated severe

bouts of stress or trauma can have consequences for behavior and

physiology that persist for a lifetime. Furthermore, stress has been

linked to the emergence of psychopathologies such as anxiety disorders

and depression (Dienes, Hazel, & Hammen, 2013; Hammen, 2005;

Monroe, Kupfer, & Frank, 1992; Muscatell, Slavich, Monroe, & Gotlib,

2009). The prevalence of stress-related disorders has driven work on

understanding the mechanistic underpinnings ranging from genetic pre-

disposition to synaptic, network, and behavioral dysfunction. Only

recently has this search turned toward the investigation of glial cells.

Clinically in humans, stress pertains to quantifiable mood and

stress disorders such as anxiety and depression, often based on the

Diagnostic and Statistical Manual of Mental Disorders. Although ani-

mal models of stress serve as a powerful research tool, these models

have been criticized due to their limited capacity to reproduce the

broad spectrum of emotions and behaviors observed in humans. Ani-

mal models do, however, reproduce the physiological aspects of stress

described in humans (autonomic and endocrine changes; classic fight

or flight responses). These evolutionarily conserved and easily quanti-

fiable traits allow investigators to (a) distinguish the effects of acute

from chronic stress, (b) determine the impact on the underlying cellu-

lar function, (c) correlate these data to behavior, and (d) carry out

preclinical drug testing. Examples of stress paradigms used in rodent

models include, footshock, forced swimming, immobilization, dehydra-

tion, chronic social defeat, chronic unpredictable stressors, breeding

animals for anxiety and depressive behaviors, and corticosterone

treatment. Despite the wide variety of protocols, there is a high-level

of convergence in the data (Figure 1), implicating similar signaling

pathways and neural circuits across varied stress paradigms. Although

there has been extensive consolidation of information on neuronal

elements and stress (Bains, Cusulin, & Inoue, 2015; Joëls & Baram,

2009; Lupien, McEwen, Gunnar, & Heim, 2009; Ulrich-Lai & Herman,

2009), there is limited information on the role of glia in the response

to stress. Here we set out to review the literature on the impact of

stress as it pertains to astroglial morphology and function in human

mental illness and rodent stress models.

1.1 | Part I—Glial dysregulation in mood and stress
disorders

Glial cells play multiple roles in regulating neuronal activity, synaptic

plasticity, blood flow and behavior. Although this is still a nascent

field, there is accumulating evidence implicating astrocytes in acute
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and chronic stress effects in animal models, as well as stress disorders

in humans.

1.1.1 | Stress is associated with changes in glial density
and morphology

Human brain imaging studies demonstrate that decreases in brain tissue

volume across multiple brain areas correlate with stress-related disor-

ders such as major depressive disorder (MDD; Grieve, Korgaonkar,

Koslow, Gordon, &Williams, 2013; Sheline, Wang, Gado, Csernansky, &

Vannier, 1996; Zavorotnyy et al., 2018). It was initially proposed that

neuronal loss was responsible for this observation in the hippocampus

(Sheline et al., 1996). An independent study using histological staining

of postmortem brain tissue revealed a similar reduction in brain volume

in the prefrontal cortex associated with depression; these changes were

not a consequence of decreases in the size or number of neuronal cells,

but rather due to reduced numbers of glial cells (Ongür, Drevets, &

Price, 1998). This depression-associated reduction in glial cell density

was exacerbated in patients who had a family history of mental health

issues, suggesting that genetic predisposition may be a contributing

factor (Ongür et al., 1998). The effect of MDD on glial cell density and

neuron: glia ratio has also been demonstrated in the amygdala (Bowley,

Drevets, Öngür, & Price, 2002), but intriguingly, these effects were

observed primarily in the left amygdala (Bowley et al., 2002). Lateraliza-

tion of the amygdala is a well-described phenomenon and it has been

suggested that grey matter volume changes in the left amygdala can be

correlated with severity of depression (Zavorotnyy et al., 2018). In the

hippocampus, data have been mixed. Some reports showing a decrease

in hippocampal volume and increased pyramidal cell density in the CA1

region indicate no change in glial cell number, as observed with Nissl's

staining, in MDD (Cobb et al., 2013). But when an astrocyte-specific

marker is used, the same group reports a decrease in GFAP-positive

(i.e., astrocytic) cell numbers in individuals with MDD who were not

administered antidepressants (Cobb et al., 2016). No effect on glial cell

numbers was found in brain tissue from patients with bipolar disorder

(Bowley et al., 2002); this observation may be confounded by mood-

stabilising medication (lithium or valproate) as separating patients based

on treatment revealed a significant decrease in glial cell density in those

not taking medication (Bowley et al., 2002). This evidence suggests that

first, glial cell density is correlated with distinct mental health disorders,

specifically major depression across multiple brain regions (Bowley

et al., 2002; Ongür et al., 1998), and second, psychoactive drugs pre-

scribed for mood disorders potentially mediate their effects through a

rescue of glial cell number. Indeed, a recent study investigated the

effects of lithium on cell proliferation in the prefrontal cortex compared

to the hippocampus and observed increases in both neuronal and glial

number in the hippocampus but not the cortex following lithium treat-

ment in naïve (nonstressed animals) (Rajkowska et al., 2016). Further-

more, this study used GFAP staining to estimate astrocyte proliferation

and observed a 15% increase in cell density in the dentate gyrus with

no effect in the medial prefrontal cortex (Rajkowska et al., 2016). In

agreement, it has been observed that the decrease number of hippo-

campal astrocytes associated with MDD was not observed in brain

tissue from patients taking antidepressants (Cobb et al., 2016), again

suggesting antidepressants limit depression-associated decline in glial

cell number. Interestingly, these studies provide evidence of glial het-

erogeneity in their response to antidepressants. Further investigation

into the underlying mechanism would be of great interest in the field.

Although these papers were pivotal in the development of a more

“gliocentric” hypothesis for stress disorders, one drawback is that

many of them did not distinguish glial cell types. Nissl staining was used

to differentiate neurons to glia, mainly based on soma size, but no

further analysis was carried to distinguish the macroglia (astrocytes,

oligodendrocytes and oligodendrocyte precursor cells) from microglia.

In addition to changes in glial cell density, studies have also reported

structural modifications specifically in astrocytes in MDD (Miguel-

Hidalgo et al., 2000; Torres-Platas et al., 2011). Initial evidence using

anti-GFAP antibodies suggested an increase in astrocyte volume in

postmortem tissue for MDD patients (Miguel-Hidalgo et al., 2000).

Interestingly, this study revealed that astrocyte size was correlated with

age, with younger depressed patients exhibiting smaller astrocyte size

compared to healthy age-matched controls, whereas older depressed

patients had larger astrocytes compared to controls (Miguel-Hidalgo

et al., 2000). Detailed single-cell analysis demonstrated that both the

FIGURE 1 Effects of stress on astrocytic structure and function.

(a) Schematic of astrocytes tiling the brain in naïve (nonstressed)
conditions (left) compared to stress (right) with decreased astrocyte
cell number and size. (b) In naïve conditions, individual astrocytes are
tightly coupled to their neighboring astrocytes. They express high
levels of astrocyte-specific proteins such as GLT-1, AQP4, Cx30, and
Cx43. Following stress astrocyte function is impaired as denoted by
decreased expression of the example proteins
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total length of astrocyte processes as well as astrocyte cell body

volume were increased in MDD compared to healthy controls (Torres-

Platas et al., 2011). These findings are reminiscent of the astrocytic

hypertrophy and remodeling that occurs in a number of disease

models including epilepsy (Castiglioni, Peterson, Sanabria, & Tiffany-

Castiglioni, 1990; Oberheim et al., 2008), and following nerve injury

(Butt & Colquhoun, 1996; Sun, Lye-Barthel, Masland, & Jakobs,

2010), which is believed to promote brain repair (Anderson et al.,

2016). As astrocyte morphology is known to be intimately linked

with synaptic function (Henneberger et al., 2018; Oliet, Piet, &

Poulain, 2001; Ostroff, Manzur, Cain, & Ledoux, 2014; Pannasch

et al., 2014), the astrocytic morphology changes observed in MDD

brain tissue indicate that this disease could be affecting neuron–glia

interactions at the level of the synapse.

Together, this evidence suggests brain region-specific alterations

in astrocyte density and morphology in mood and stress disorders.

Interestingly, antidepressants impact these structural changes, sug-

gesting these drugs may rely on a glial mechanism to improve mental

health. The variability between studies and the effects in different

brain regions could reflect astrocyte heterogeneity across the brain.

This is a rapidly developing field, as more tools to investigate detailed

astrocyte function appear, we are able to distinguish discrete populations

of cells. This heterogeneity appears to be associated with surrounding

neurons and the co-dependent relationship between neurons and glia

during development (Chai et al., 2017; Xin et al., 2019). Indeed, this could

underlie the differential effects on glial cell number and structure in

mood disorders. Other factors that may underlie this variability include

the age, sex, ethnicity, environment, severity and duration of disease.

One could imagine that alterations in astrocyte cell number would only

occur in the most severe cases of mood and stress disorders as losing

these glia is likely to have a profound impact on brain physiology.

1.1.2 | Stress is associated with changes in astrocyte gene
expression profiles

Strong evidence of astrocyte dysfunction as a result of stress disor-

ders has been generated using nonbiased transcriptome analyses.

These analyses, which do not consider a priori assumptions, generate

large data sets and are great resources when attempting to under-

stand the mechanisms underlying pathology. These approaches have

shown that the gene expression profiles of astrocytes are sensitive to

depression, an indication that these cells may react and respond to

the demands of stress (Ernst et al., 2011; Klempan et al., 2009; Nagy

et al., 2015; Nagy, Torres-Platas, Mechawar, Turecki, & Blvd, 2017;

Torres-Platas, Nagy, Wakid, Turecki, & Mechawar, 2016). In particular

it has been shown that both connexin (Cx) 30 and 43 are downregu-

lated in MDD (Ernst et al., 2011; Nagy et al., 2017). These two pro-

teins are the major gap-junction channel forming proteins, responsible

for intercellular communication between astrocytes, as well as for

shuttling of energy substrates and metabolites between astrocytes

(Giaume, Koulakoff, Roux, Holcman, & Rouach, 2010). Gap-junction

coupling proteins Cx30 and 43 are known to have profound impact

on neuronal signaling and plasticity (Pannasch et al., 2011, 2014; Rouach,

Koulakoff, Abudara, Willecke, & Giaume, 2008; Sibille, Pannasch, &

Rouach, 2014). Furthermore, it has been demonstrated that Cx30

controls astrocyte morphology, limiting synapse invasion by astrocyte

processes (Pannasch et al., 2014). As such, these data demonstrating

astrocyte hypertrophy (Torres-Platas et al., 2011) could be a conse-

quence of reduced gap-junction channel expression and/or function in

stress disorders (Ernst et al., 2011; Nagy et al., 2017). Also notewor-

thy, in the context of stress disorders where sleep becomes an issue,

it has been shown that Cx43-mediated GJ coupling between astro-

cytes plays a crucial role in the regulation of the sleep–wake cycle

(Clasadonte, Scemes, Wang, Boison, & Haydon, 2017). Whether

stress-induced reduction in Cx43 expression contributes to the sleep

dysregulation associated with depression remains unknown. Astro-

cytes are also known to influence sleep pressure through release of

gliotransmitters acting on neuronal adenosine A1 receptors (Florian,

Vecsey, Halassa, Haydon, & Abel, 2011; Halassa et al., 2009). This

information is clinically relevant as the antidepressant effects of deep-

brain stimulation appear to be dependent on astrocyte function,

specifically relating to gliotransmitter release acting on A1 recep-

tors (Etiévant et al., 2015).

The transcription factor sox-9, which is specific to astrocytes and

has been used as a marker to label these cells (Sun et al., 2017), has

been demonstrated to be downregulated in MDD (Ernst et al., 2011).

The authors took this finding, which was acquired from human tissue,

back to the bench to determine the relevance of sox-9 on astrocyte

function. Using a rodent model to knock down sox-9 resulted in a

strong decrease in Cx30 protein, as observed by western blots (Ernst

et al., 2011). These data suggest depression can dramatically impact

astrocyte network function, which may play a role in the synaptic defi-

cits and cognitive decline associated with the disease. The mechanism

by which sox-9 regulates specifically Cx30 expression is unknown

and, to our knowledge, has not been investigated further. Sox9 is

known to be involved in the Wnt/β-catenin signaling pathway, which

can regulate expression of other gap-junction proteins such as Cx43

(Ai, Fischer, Spray, Brown, & Fishman, 2000). The mechanism by

which sox-9 regulates Cx30 expression remains elusive.

The dysregulation of astrocyte gap-junction channel protein

expression in the prefrontal cortex of individuals with MDD may be

due to epigenetic mechanisms, including DNA methylation (Nagy

et al., 2015). These data show that deficiency in GJA1 or GJB3 genes,

which code for Cx30 and 43 respectively, does not underpin the

major depression phenotype, but rather that the expression of these

genes is reduced as a result of the disease. Evidence suggestive of

reduced gap junction expression in astrocytes was also observed in

hippocampal tissue from depressed patients (Medina et al., 2016),

suggesting that the down regulation of Cx30 and Cx43 could be a

brain-wide phenomenon and a general maladaptation of this disease.

Astrocytes are pivotal for efficient glutamate uptake and conver-

sion to glutamine, which can then be recycled back to neurons. GLT-

1, GLAST, and glutamine synthetase are all essential for glutamate

uptake and recycling and are specifically expressed in astrocytes.

Decreases in mRNA for all three proteins have been detected in the

locus coeruleus (which provides significant noradrenergic input to the

forebrain) of patients with MDD (Bernard et al., 2011). Interestingly,

this study also revealed depression-induced reduction in transcripts

for GFAP, S100 calcium-binding protein B (S100B), Cx30, and 43, as

well as aquaporin 4 (AQP4) but not in bipolar patients (Bernard et al.,

2011). Decreases in GFAP expression in hindbrain regions such as the
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cerebellum have been described in patients with MDD (Fatemi et al.,

2004). This is particularly relevant in light of recent data demonstrat-

ing the role for the cerebellum in reward circuitry and social behavior

(Carta, Chen, Schott, Dorizan, & Khodakhah, 2019). One could speculate

that astrocyte dysfunction in the cerebellum, and other hindbrain regions,

in mood and stress disorders impact projections from these regions to

forebrain areas such as the ventral tegmental area (VTA; Carta et al.,

2019), influencing the salience of reward and social behaviors.

These data suggest significant astrocyte dysfunction in major

depression, but not in other mood disorders. Furthermore, the specific

mRNA transcripts affected by MDD are all highly relevant to astro-

cytic control of synaptic function. For example, astrocytic glutamate

uptake, as well as conversion to glutamine, is pivotal to proper synap-

tic function at both excitatory and inhibitory synapses (Battaglioli &

Martin, 1991; Norenberg & Martinez-Hernandez, 1979). As such, dys-

regulation of these genes could have dramatic effects on synaptic

transmission, as well as modifying excitatory-inhibitory balance in the

brain. Another astrocytic gene of interest impacted by depression is

S100B (Bernard et al., 2011), a calcium binding protein commonly

used as a marker for astrocytes. This protein is released by astrocytes to

control neuronal firing and subsequently rhythm generation (Morquette

et al., 2015). The reduction in S100B mRNA observed by Bernard et al.

(2011), however, is in contrast to another study reporting an increase in

S100B in patients with MDD (Schroeter, Abdul-Khaliq, Diefenbacher, &

Blasig, 2002). This discrepancy may be due to measurement approaches

(brain vs. serum) or it may reflect heterogeneity in MDD patient popula-

tions including the age of patients and the duration of disease.

Major depression can also result in modifications of protein expres-

sion in specific astrocyte compartments such as the astrocyte endfoot

(Rajkowska, Hughes, Stockmeier, Javier Miguel-Hidalgo, & Maciag,

2013), which line the parenchymal cerebral vasculature (Mathiisen,

Lehre, Danbolt, & Ottersen, 2010) and can modulate arteriole tone

(Rosenegger, Tran, Wamsteeker Cusulin, & Gordon, 2015). Using anti-

bodies against AQP4, an astrocyte specific water-permeable channel,

a decrease was detected in AQP4 from MDD brain tissue compared

to healthy controls (Rajkowska et al., 2013). There was, however, no

evidence to support structural remodeling of the astrocyte endfoot,

indicating that the stress-induced remodeling of astrocytes at the blood

vessel was selective for specific proteins (Rajkowska et al., 2013). No

changes to the fine astrocyte arbour, which interacts with synaptic ele-

ments, were detected using light microscopy. Given the small size of

astrocyte processes, which can be below 100 nm (Henneberger et al.,

2018), these studies likely did not have the subcellular resolution neces-

sary to detect any fine structural modifications. The consequences of

AQP4 dysregulation in MDD are unknown, but downregulation of this

water channel leads to impaired signaling of volume regulated anion

channels (Benfenati et al., 2007). Volume changes in astrocytes are also

involved in many different aspects of astrocyte function, including the

control of osmotic homeostasis (Ciura et al., 2018).

Together these data suggest possible links between structural dys-

regulation as well as gene expression changes in astrocytes to chronic

pathological stress phenotypes. Considering what we have learned

about astrocyte structure and function in the regulation of synaptic

transmission and plasticity, it is highly likely that these broad changes in

some of the most vital astrocyte-specific proteins contribute to the

cognitive impairments associated with mood and stress disorders.

These gene expression profile changes in astrocytes are likely to differ

with severity of disease, following and potentially compensating for

underlying synaptic alterations known to be associated with these dis-

orders. For example, it is known that synaptic proteins and dendritic

spines are dramatically reduced in major depression (Kang et al., 2012).

Considering the intimate relationship between astrocyte fine processes

and synaptic elements, it would be more surprising if this change was

not mirrored by a decrease in astrocyte-specific proteins known to

localise at the synapse such as glutamate transporters. What we do not

know, is whether these changes in astrocyte gene expression profiles

contribute to, or are a consequence of, the reduction in synaptic den-

sity and associated cognitive impairments. It is possible that stress

directly affects astrocytes, as these cells highly express glucocorticoid

receptors (Zhang et al. 2014), leading to dysregulation of many genes

and ultimately neuronal dysfunction.

Human data, while being the gold standard for understanding dis-

ease, can prove difficult to interpret with many different genetic and

lifestyle factors playing a role in disease phenotypes. The data pre-

sented above can only indicate astrocyte dysfunction in mood and

stress disorders, as it is very challenging to make causal connections

between astrocytes and human disease. However, we do know that

astrocytes strongly regulate glutamate levels in the brain, and altered

glutamate homeostasis has been repeatedly observed in depression.

Increased glutamate levels have been measured in the plasma (Mauri

et al., 1998), serum (Mitani et al., 2006), CSF (Frye, Tsai, Huggins,

Coyle, & Post, 2007) and with magnetic resonance spectrometry (Frye

et al., 2007). A meta-analysis of MRS data revealed decreased gluta-

mate levels across multiple studies in the cortex (Luykx et al., 2012).

Nevertheless, the locus of glutamate mishandling is difficult to pin-

point as this could be a combination of neuronal and/or astrocyte dys-

function. As such animal models are vital to better understand the

mechanistic underpinnings of different aspects of stress disorders.

1.2 | Part II—Animal models linking astrocyte
dysfunction in mood and stress disorder

Animal models used to study mood and stress disorders have delivered

great insight into the effects of stress on astrocytes. These models

enable the quantification of distinct aspects of stress on cellular function,

and allow for the correlation with behavior. We will discuss the effects

of stress on several aspects of astrocyte structure and function. It is

important to note that astrocytes do not exist in isolation and dynami-

cally interact with surrounding neurons and glia. As such, it can be diffi-

cult to ascertain whether stress directly impacts astrocyte function, or

whether any changes in astrocyte structure and function is in response

to effects on neighboring cell types. Furthermore, until recently it has

been difficult to specifically target astrocytes, manipulate their function

and observe the impact on network function and behavior.

1.2.1 | Effects of chronic stress paradigms on astrocyte
structure and function

Glial fibrillary acidic protein

Early investigation revealed that corticosterone down-regulates GFAP

expression brain-wide, in response to both acute and chronic CORT
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delivery (Nichols, Osterburg, Masters, Millar, & Finch, 1990; O'Callaghan,

Brinton, & McEwen, 1991). This reduction in GFAP has been more

recently validated using a chronic unpredictable stress protocol (Banasr

et al., 2010). The roles of the intermediate filament protein GFAP are

many (Hol & Pekny, 2015), including the anchoring of astrocytic gluta-

mate transporters in the membrane (Sullivan et al., 2007). Reduced

GFAP expression has also been demonstrated to negatively affect cell

process growth toward neurons in vitro (Weinstein, Shelanski, & Liem,

1991). This suggests that reduced GFAP levels observed after stress in

rodent models, as well as in human brain tissue from major depressive

patients (Bernard et al., 2011; Fatemi et al., 2004; Torres-Platas et al.,

2016), could influence astrocytic interactions at the synapse. Neuron–

glia interactions at the synapse are highly dynamic and have been

shown to remodel in response to homeostatic stress such as dehydra-

tion (Chapman, Theodosis, Montagnese, Poulain, & Morris, 1986),

following fear conditioning paradigms (Ostroff et al., 2014), and in

response to physiological levels of neuronal activity (Bernardinelli et al.,

2014; Henneberger et al., 2018). However, the precise mechanism by

which prolonged CORT exposure leads to decreased GFAP protein

expression, and whether this impacts neuron–glia interactions under

these conditions remains unknown. As mentioned above, gene expres-

sion analysis revealed dysregulation of not only GFAP but also AQP4,

S100B, and gap-junction channel proteins Cx30 and 43 in human MDD

patients (Bernard et al., 2011). This demonstrates the complexity of

chronic stress in the human compared to the rodent models, some of

which rely on exogenous CORT exposure. It is likely that CORT treat-

ment alone is mimicking one aspect of stress disorders, as high cortisol

levels in humans is but one hallmark associated with stress disorders

(Dienes et al., 2013). High blood cortisol is not unique to stress disorder

but is also found in Cushing's disease, a rare metabolic disorder charac-

terised by excessive secretion of adrenocorticotropic hormone (ACTH)

from the pituitary. Interestingly, there is a strong co-morbidity of men-

tal health disorders and depression in Cushing's disease (Pivonello et al.,

2015; Sonino, Fava, Raffi, Boscaro, & Fallo, 1998), which may be due to

the central effects of chronically elevated cortisol. To our knowledge

astrocyte dysfunction underlying the depressive symptoms in Cushing's

disease remains unexplored.

Neurovascular coupling

The chronic psychosocial stress rodent model of depression results in

a reduction in individual astrocyte volume and decreased total number

of astrocytes in the hippocampus (Czéh, Simon, Schmelting, Hiemke, &

Fuchs, 2006). Furthermore, animals treated with an antidepressant

during the chronic stress protocol were resistant to the stress-induced

modifications in astrocyte number and structure (Czéh et al., 2006).

Similar data were obtained by selectively breeding rats for depressive

phenotypes, demonstrating that depression induces distinct changes in

astrocyte morphology (Di Benedetto et al., 2016). These stress-induced

morphological modifications which largely impacted the association of

astrocyte endfeet at the blood vessel, could be completely reversed

with selective serotonin reuptake inhibitor (SSRI) antidepressant (fluox-

etine) treatment, in a mechanism requiring AQP4 (Di Benedetto et al.,

2016). To date, despite the indication that astrocyte endfeet lining the

cerebrovasculature are modified as a result of stress disorder in humans

(Rajkowska et al., 2013) as well as in rodent models (Di Benedetto

et al., 2016), evidence for dysfunction at the vascular interface is

sparse. Under physiological conditions astrocytes integrate synaptic,

behavioral and vascular information to mediate an appropriate blood

vessel response (Tran, Peringod, & Gordon, 2018). As there is strong

evidence for stress influencing both synaptic transmission and behav-

ioral state (Füzesi, Daviu, Wamsteeker Cusulin, Bonin, & Bains, 2016;

Sterley et al., 2018), stress-induced modification of neurovascular

coupling is expected. One study, carried out in the amygdala, observed

that 7 days of heterotypical stress lead to deficiency in the response of

vascular cells to vasodilatory signals released by astrocytes (Longden,

Dabertrand, Hill-Eubanks, Hammack, & Nelson, 2014). This suggests

that as well as affecting astrocyte function, stress also appears to

impair vascular contractile cells in a glucocorticoid-dependent man-

ner (Longden et al., 2014). Whether stress affects astrocytic integra-

tion of synaptic and behavioral states, to influence blood vessel

dynamics remains unknown. Regarding direct effects of stress on the

vasculature, chronic stress has been shown to decrease blood–brain

barrier stability (Menard et al., 2017) and increase vascular stiffness

in a systemic manner (Goodson et al., 2017).

Glutamate uptake and transmission

Glutamate uptake and metabolism by astrocytes is impaired by

chronic unpredictable stress in the cortex (Banasr et al., 2010). As

mentioned above, glutamate metabolism to glutamine is carried out

solely by astrocytes (Norenberg & Martinez-Hernandez, 1979) and

glutamine is a precursor for both GABA and glutamate (Battaglioli &

Martin, 1991). Importantly, it was demonstrated that manipulation of

astrocyte function using Riluzole, a drug known to increase astrocytic

glutamate transporter expression (Carbone, Duty, & Rattray, 2012),

was sufficient to alleviate the effects of stress in this model (Banasr

et al., 2010). These data suggest a link between astrocyte glutamate

uptake and metabolism in stress-induced behavioral phenotypes.

However, other studies have provided opposing data, with increased

GLT-1 mRNA and protein expression in the hippocampus (Reagan

et al., 2004; Wood, Young, Reagan, Chen, & McEwen, 2004). Interest-

ingly, both the antidepressant Tianeptine (Reagan et al., 2004) and the

antipsychotic Lithium (Wood et al., 2004) can restore GLT-1 expression

to naïve levels. These seemingly opposing data could reflect the differ-

ent stress paradigms used by the two groups. Banasr et al. (2010) used

35 days of unpredictable stress compared to 21 days of restraint stress

used by Reagan et al. (2004) and Wood et al. (2004). Unfortunately,

none of these studies measured glutamate transporter currents in

astrocytes from these models. As such there is a possibility that despite

the increased expression observed in Reagan et al. (2004) and Wood

et al. (2004), there may still be functional deficits in glutamate uptake.

Nevertheless, there was a common observation demonstrating modifi-

cations in glutamate transporter expression which was rescued—no

matter whether it was pathologically increased or decreased—with anti-

depressants. Another study, using the Flinders sensitive line of rats, a

strain which expresses a depressive-like phenotype (Overstreet &

Wegener, 2013), found no modification in hippocampal GLT-1 expres-

sion assessed using western blots (Gómez-Galán, De Bundel, Van

Eeckhaut, Smolders, & Lindskog, 2013). They did, however, observe
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decreased GLAST expression. Furthermore, the study reports LTP

impairments, which could be rescued with exogenous D-serine applica-

tion. Validation of this finding using liquid chromatography revealed

decreased levels of D-serine in this rodent model of depression

(Gómez-Galán et al., 2013). Although there is no clear link between

GLAST downregulation and D-serine production, this suggests astro-

cytic dysfunction in distinct aspects of glutamatergic transmission in

the hippocampus. Furthermore, this study highlights the differences

between models used for depression. The Flinders sensitive line of rats

was developed specifically for its hypersensitivity to cholinergic ago-

nists, similar to human depressive patients, and depressive-like pheno-

types (Overstreet, 1993). As such, direct comparisons between this

genetic rodent model and stress-induced models of depressive-like dis-

orders are challenging. Distinct animal models likely reproduce specific

aspects of disease. The Flinders sensitive model may be more suited for

the study of genetic forms of human depression, as this depressive-like

phenotype is genetic, whereas stress-induced models may relate more

to depression following extreme, stressful life events.

It has been demonstrated that depressive phenotypes can be

driven by inducing astrocyte dysfunction alone. It was found long-

term NMDA receptor antagonism by memantine, which acts as an

open channel blocker (Lipton, 2004), induced a reduction astrocytic

glutamate transport that correlated with a depressive phenotype

(Zimmer et al., 2015). The link between NMDA receptor antagonism

and glutamate transporter function in this model of stress is unclear. It

is possible that the reduction in neuronal activity induced by NMDA

receptor antagonism was matched by reduced glutamate transporter

expression on astrocytes. Dynamic feedback between neuronal activ-

ity and astrocytic glutamate uptake has been widely observed and

thus this is a probable explanation (Al Awabdh et al., 2016; Armbrus-

ter, Hanson, & Dulla, 2016; Murphy-Royal et al., 2015; Yang et al.,

2009). There is evidence, however, for the expression of functional

NMDA receptors on astrocytes in upper layers of the cortex (Mehina,

Murphy-Royal, & Gordon, 2017). As such the effects of prolonged

NMDA receptor antagonism on glutamate transporter function used

in Zimmer et al. (2015) could be mediated by direct effects of meman-

tine on astrocytic NMDA receptors. In agreement with the data from

Zimmer et al. (2015), injection of a dihydrokainate into the prefrontal

cortex of rats, to block glutamate uptake, was found to be sufficient

to drive anhedonia-like behaviors in multiple studies (Bechtholt-

Gompf et al., 2010; Cui et al., 2014; John et al., 2012; Lee, Gaskins,

Anand, & Shekhar, 2007).

In contrast to long-term NMDA receptor antagonism which

appears to be able to drive a depressive phenotype (Zimmer et al.,

2015), acute treatment with the NMDA receptor antagonist ketamine

has been shown to reduce symptoms of depression (McGirr et al.,

2015) and depressive-like phenotypes (McGirr, LeDue, Chan, Xie, &

Murphy, 2017). One study investigated the effects of stress on cortical

connectivity in situ using mesoscale cortical imaging of glutamatergic

transmission in rodent model of depression. Following chronic stress

the authors found aberrant cortical connectivity associated with alter-

ations in glutamatergic signaling, which could be rapidly reversed with

brief, low-dose ketamine exposure (McGirr et al., 2017). This data

mimics the rapid antidepressant effects of ketamine in human patients

(McGirr et al., 2015). The underlying mechanism by which this occurs

remains to be resolved; however it does appear to involve increased

neuronal activity (Carreno et al., 2016; Fuchikami et al., 2015), increased

release and cycling of glutamate (Chowdhury et al., 2012, 2017;

Moghaddam, Adams, Verma, & Daly, 1997), and release of neurotrophic

factors (Autry et al., 2011). Despite the knowledge that astrocytes can

regulate neuronal activity, are directly involved in glutamate homeostasis,

and can readily release neurotrophic factors, their implication in the anti-

depressant effects of ketamine has yet to be determined.

Metabolic dysfunction

In addition to stress-induced metabolic deficiencies in glutamate han-

dling (Banasr et al., 2010), recent reports demonstrate that peripheral

infusion of L-lactate alleviates certain aspects of depression-like behav-

ior in rodents (Carrard et al., 2018). This hints at a role for more global

astrocytic metabolic deficiencies in stress-related disorders. These data

suggest that L-lactate production and/or release from astrocytes is

impaired in chronically stressed mice. Consistent with this idea, 5 weeks

of chronic unpredictable stress have a severe impact on glycogen syn-

thesis and glycogenolysis in the brain (Zhao et al., 2017). Unlike the

periphery where glycogen synthesis decreases, stress is associated with

an increase expression and function of glycogen synthase in the brain

(Zhao et al., 2017). Despite the seemingly compensatory mechanism of

upregulating glycogen synthesis during glycogenolysis, chronically

stressed animals exhibited glycogen deficiency and a depressive-like

phenotype (Zhao et al., 2017). These data are strongly suggestive of

astrocytic metabolic dysfunction in chronic stress, as astrocytes are the

only brain cells which can store energy in the form of glycogen.

In vivo evidence suggests that there is a gradient of lactate with

high levels present in astrocytes and lower levels in neurons, predicting

lactate movement down its concentration gradient (Mächler et al.,

2016). As such, stress-induced impairment of astrocytic energy

reserves, in the form of glycogen (Zhao et al., 2017), is likely to directly

impact lactate production and shuttling to neurons. The idea that astro-

cytes support neuronal activity with lactate in an activity-dependent

manner was originally proposed by Pellerin and Magistretti (1994), and

forms the basis of what is now known as the astrocyte-neuron lactate

shuttle (ANLS) hypothesis (Magistretti & Allaman, 2018). Metabolic net-

works formed by gap-junction channel connected astrocytes are neces-

sary for sustained synaptic transmission (Rouach et al., 2008), for

certain forms of synaptic plasticity such as long-term potentiation, and

for memory formation in vivo (Gibbs et al., 2006, b; Suzuki et al., 2011).

These data indicate that astrocytic networks function as an energy res-

ervoir, permitting diffusion of energy substrates between individual

cells to areas with high energetic demand. The fact that multiple studies

link dysfunction of astrocyte metabolism with depression-like pheno-

types is intuitive, as a breakdown in the ANLS would likely limit synap-

tic bioenergetics, and could underlie impaired synaptic plasticity has

been reported to occur at glutamatergic synapses following stress in

the hippocampus and surrounding brain regions (Baker & Kim, 2002;

MacDougall & Howland, 2013).

Gap-junction coupling

Chronic unpredictable stress, which is sufficient to drive behavioral

abnormalities, including decreased sucrose preference and novelty
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suppressed feeding, is correlated with a downregulation in the

astrocyte specific gap-junction channel Cx43 (Sun, Liu, Yuan, Li, &

Chen, 2012). Intriguingly, in vivo treatment with SSRIs (fluoxetine and

duloxetine) increased the expression of Cx43 protein (Sun et al., 2012).

These data further support the hypothesis that clinical anti-depressants

may relieve behavioral symptoms by modifying the expression of astro-

cytic proteins which are known to be affected by stress in rodents

(Carter, Hamilton, & Thompson, 2013; Ernst et al., 2011; Sun et al.,

2012) and in clinically depressed patients (Bernard et al., 2011; Ernst

et al., 2011; Nagy et al., 2017). Furthermore, treatment with SSRIs or

with the glucocorticoid receptor antagonist mifepristone fully rescues

the effects of chronic stress on astrocytic Cx43 expression and reverses

behavioral phenotypes associated with chronic unpredictable stress

(Sun et al., 2012). An independent study made similar observations using

chronic glucocorticoid treatment as their stress paradigm (Quesseveur

et al., 2015). Specifically, chronic CORT reduced astrocytic Cx43 expres-

sion levels and this decrease was blocked when animals were treated

with fluoxetine. Furthermore, knocking out Cx43 induced behavioral

deficits similar to stress (Quesseveur et al., 2015). The fact that these

two independent studies, using different stress protocols, revealed a

conserved mechanism supports the robustness of the findings. Further-

more, noradrenaline, which is necessary for the effects of SSRIs to

induce their antidepressant effects (Cryan et al., 2004), can also induce

astrocytic release of ATP (Gordon et al., 2005), suggesting a potential

role for astrocyte-derived ATP in stress disorders. Indeed, reduced glio-

transmission can lead to a depressive-like phenotype (Cao et al., 2013).

It was demonstrated that manipulating astrocyte calcium signaling, or

blocking gliotransmitter release using the dominant-negative SNARE

transgenic mouse line, was sufficient to prevent or mimic stress pheno-

types (Cao et al., 2013). This was suggested to be a consequence of

reduced ATP release from astrocytes (Cao et al., 2013). Although the

data from this specific study are compelling, there are likely concomitant

decreases in the release of other astrocytic gliotransmitters, as the dn-

SNARE mouse is not selective for ATP. Furthermore, there could be a

reduction in ATP production by astrocytes which limits ATP availability

for gliotransmission.

Wnt/β-catenin signaling

There is an extensive literature regarding wnt/β-catenin signaling. This

pathway is pivotal during development for both neurons and glia, specif-

ically during angiogenesis and oligodendrocyte maturation (Fancy et al.,

2009). Dysregulation of neuronal and/or astrocytic β-catenin may

underlie stress-induced structural reorganisation of cortical dendrites

and loss of dendritic spines (Liston et al., 2006; Radley et al., 2006).

Endogenous levels of β-catenin can be used to predict stress resilience

in a rodent model of chronic social defeat stress (Dias et al., 2014). Using

a viral approach, Dias et al. (2014) increased or decreased β-catenin

levels to influence stress resilience and susceptibility, respectively (Dias

et al., 2014). The viral approach did not distinguish cell-type, and as such

both neurons and glia were likely impacted by this manipulation. An

independent study investigated the effects of targeting β-catenin over-

expression specifically in GLAST-expressing cells (i.e., astrocytes; Vidal

et al., 2018), which was sufficient to reduce anxiety-like behaviors (Vidal

et al., 2018). These data implicate astrocytic wnt/β-catenin signaling in

the central response to stress. Manipulation of wnt/β-catenin signaling

impacts LTP (Ivanova et al., 2017). As mentioned above, canonical

Wnt/β-catenin signaling can affect gap-junction channel expression

(Ai et al., 2000). Linking these data together, it has been demonstrated

that dysregulation of the astrocyte gap-junction channel Cx30, disrupts

long-term potentiation of synaptic transmission (Pannasch et al., 2014).

This speculative link between β-catenin and the expression of gap-

junction proteins impacting plasticity in the context of stress requires

further validation. Although the role of β-catenin in synapse formation

has been well-described at the presynaptic active zone (Bamji et al.,

2003), and in pre- and postsynaptic PDZ domain-recruiting proteins

(Brigidi & Bamji, 2011), evidence for a role of astrocytic β-catenin in

astrocyte–synapse interactions is limited. It appears that β-catenin posi-

tively regulates GLT-1 expression through an unidentified mechanism

(Lutgen, Narasipura, Sharma, Min, & Al-Harthi, 2016), but whether

β-catenin also functions as a scaffold element in glia to either form, or

maintain the integrity of the tripartite synapse is not known.

Another tentative link between these distinct findings may be

that wnt signaling can inhibit glycogen synthetase kinase 3β (Chen,

Ding, & McCormick, 2000). Inhibition of GSK3β stimulates activation of

glycogen synthase and glucose transport (Oreña, Torchia, & Garofalo,

2000) in nonbrain cells. As such altered wnt/β-catenin signaling could

affect the metabolic function of astrocytes by impairing astrocyte net-

work connectivity and/or directly manipulating metabolism in these

cells. Finally, the effects of GSK3β can be replicated with lithium treat-

ment, a common mood stabilizing drug used to treat bipolar disorder,

suggesting that the benefits of lithium for mood disorders (Chen et al.,

2000; Klein & Melton, 1996; Stambolic, Ruel, & Woodgett, 1996) may

rely on astrocytes.

1.2.2 | Effects of acute stress on astrocyte structure and
function

Although studies investigating the effects of acute stress on astro-

cytes are limited, the data published to date indicate profound effects

on behavior. A single bout of acute stress provokes astrocytic

release of fibroblast growth factor 2 (FGF2), promoting maturation

of hippocampal neural stem/progenitor cells (NPCs) and conferring

enhanced retainment of fear extinction memory (Kirby et al., 2013).

Prior to this study, FGF2 had been identified as being necessary for the

antidepressant-mediated rescue of depressive behaviors, as inhibition

of FGF2 activity was shown to block the effect of antidepressants

(Elsayed et al., 2012). Targeting the FGF system is a clinically relevant

target as it has the FGF system is downregulated in MDD and modu-

lated by SSRIs (Evans et al., 2004). Interestingly, FGF2 has also been

implicated in a rodent model of post-traumatic stress disorder (PTSD),

where a single prolonged stress protocol, which induces behavioral

impairments lasting up to 14-days poststress, was rescued with FGF2

treatment (Xia et al., 2013). The study reports decreased GFAP and

structural alterations in hippocampal astrocytes which were rescued

with FGF2, suggesting astrocytic impairments could underlie the behav-

ioral deficit in this model (Xia et al., 2013). Similar findings regarding

GFAP expression and morphological alterations in astrocytes have been

reported using a single inescapable foot shock protocol (Saur et al.,

2016), indicating a conserved response by astrocytes to acute stress.

We do not yet understand the impact of these structural modifications
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on astrocytic function at the level of the synapse. The role for these

long-lasting, late-onset adaptations to acute stress are unclear. This

may indicate that even single bouts of acute stress may have long last-

ing impacts on brain function and could potentially influence future

stress susceptibility or resistance.

Transcriptomic analyses of potential astrocyte-specific changes

following both acute and chronic glucocorticoid treatment of rodents

in vivo has been performed (Carter et al., 2013). Modifications in

genes coding for gap-junction channels Cx30 and 43, glutamate trans-

porters, glutamine synthetase, and many others were reported (Carter

et al., 2013). These data are in line with human data from MDD

patients (Bernard et al., 2011; Ernst et al., 2011; Nagy et al., 2017),

and indicate that glucocorticoid signaling in stress pathology may be a

primary driver of astrocyte dysfunction. Many of these genes are also

differentially regulated by acute versus chronic CORT, displaying

strong variability between the cortex and hippocampus which could

reflect astrocyte heterogeneity across the brain (Carter et al., 2013).

Although the functional outcome of altered gene expression could not

be assessed using this approach, the data provide insight into the

potential impact of acute and chronic glucocorticoid action on astro-

cyte function.

Despite the data noted above, acute glucocorticoid treatment

cannot fully replicate the synaptic deficits induced by acute stress

in vivo (MacDougall & Howland, 2013). Although acute stress induced

significant impairments of synaptic plasticity in the rat dorsal subicu-

lum through a glucocorticoid receptor-mediated process, glucocorti-

coid treatment alone was insufficient to reproduce this synaptic

phenomenon (MacDougall & Howland, 2013). These data suggest

potential synergistic effects of additional neurochemical cascades

induced by stress, for example, catecholamines (Roebuck, Liu, Lins,

Scott, & Howland, 2018), which may act in concert with glucocorticoids

to drive modifications in synaptic function. Nevertheless, MacDougall

and Howland (2013) neither quantified nor speculated upon the effects

of CORT on astrocytes. Perhaps acute CORT actions on astrocytes

maintain neuronal homeostasis, despite the stress, in this circuit. An

independent study using an acute CORT administration protocol found

a decrease in astrocytic gap-junction channel expression (Quesseveur

et al., 2015), indicating that there are measurable effects of CORT

treatment on astrocytes. Considering the strong role of astrocytes in

tuning synaptic transmission and plasticity through various mechanisms

(Gordon et al., 2009; Henneberger, Papouin, Oliet, & Rusakov, 2010;

Matos et al., 2018; Morquette et al., 2015; Murphy-Royal, Dupuis,

Groc, & Oliet, 2017; Panatier et al., 2011), it is possible that CORT

along with neuromodulators released during the central stress response

such as corticotropin releasing hormone or noradrenaline can act

synergistically on astrocytes to induce the release of gliotransmit-

ters, impacting synaptic plasticity. Evidence for the synergistic action

of neuromodulators alongside classical neurotransmitters (such as

glutamate) acting on astrocytes to modulate synaptic plasticity was

recently demonstrated (Crosby et al., 2018).

1.2.3 | Effects of antidepressants on astrocyte function

Many independent laboratories have now investigated the effects of

antidepressants on astrocytes. In order to isolate the effects of specific

drugs on astrocytes, many of these studies have been carried out in

purified cell culture models, which removes the interaction between

other brain cell types. There appears to be an overall consensus that

treating astrocytes with SSRIs, such as fluoxetine, leads to increased

expression of gap-junction channel proteins in cultures (Jeanson et al.,

2015; Mostafavi et al., 2014) as well as in vivo with chronic fluoxetine

treatment (Fatemi et al., 2008). This has also been shown in cultured

astrocytes treated with amitriptyline, a tricyclic antidepressant (Morioka

et al., 2014). Antidepressants can also induce astrocytic release of neu-

rotrophic factors such as VEFF (Allaman, Fiumelli, Magistretti, & Martin,

2011), and BDNF (Allaman et al., 2011; Hisaoka-Nakashima et al.,

2016; Kittel-Schneider et al., 2012; Quesseveur et al., 2013). Fluoxetine

induces metabolic modifications in astrocytes, which stimulate

increased glucose uptake and lactate release in cell culture conditions

(Allaman et al., 2011). This has also been demonstrated for another

SSRI, paroxetine, but not the tricyclic antidepressants (TCAs) imipra-

mine and desipramine (Allaman et al., 2011). Lithium has been shown

to increase astrocyte proliferation in basal conditions (Rajkowska et al.,

2016), providing a potential mechanism through which antidepressants

rescue glial cell density in human depression (Cobb et al., 2016).

Together, these studies suggest that antidepressants have dramatic

effects on astrocytic protein expression profiles and induce the release

of neuroactive factors. These observations warrant further investiga-

tion to delve into the mechanisms by which antidepressants alone, that

is, without stress, induce such dramatic modifications in astrocytes. Fur-

thermore, this suggests that a significant therapeutic contribution for a

wide variety of antidepressants may be a consequence of direct actions

on astrocytes.

Given the above literature, it is clear that there is a growing body

of evidence suggesting that astrocyte dysfunction plays a role in driv-

ing depressive phenotypes. In the absence of correlative data from

human stress disorders, these studies should be interpreted with cau-

tion. Manipulating astrocyte function in preclinical models to reveal

anxiety- or depression-like phenotypes does not necessarily mean

that such mechanisms are shared with the human condition. Impair-

ment of even one aspect of astrocyte function could have dramatic

consequences on a multitude of brain functions resulting in an array

of behavioral phenotypes. Insights gleaned from animal models of

stress are in line with many human studies regarding the stress-induced

modification of astrocyte structure and function. This convergence is

important for the validation that rodent models of stress-disorders

might indeed prove useful in revealing the biological underpinnings in

disease. Furthermore, these studies indicate that antidepressants have

measurable effects on astrocyte structure and function. The mechanism

by which antidepressants affected astrocytes in these studies remains

unresolved and will undoubtedly require further investigation of astro-

cyte function and dysfunction in rodent models of disease.

1.3 | Part III—Conclusions and future directions

We have described many of the specific experiments and gaps in our

knowledge regarding astrocytes and stress. The accumulating evi-

dence is strongly suggestive of a role for astrocytes in mood and

stress disorders. This family of glia appear to be highly-sensitive to

stress and likely participate in multiple aspects of stress disorders.
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One of the major questions remaining in the field is where these cells

lie in disease development and progression. Could genetic dysregula-

tion of these cells underlie mood disorders, leading to higher suscepti-

bility for depression, anxiety, and PTSD? There is strong evidence for

epigenetic regulation of astrocytes by depression, which contradicts a

purely genetic origin and suggests that astrocytes are key players in

mood and stress disorders (Nagy et al., 2015). Are astrocytes respond-

ing to neuronal dysfunction in depression, attempting to limit stress-

induced effects on normal synaptic transmission and plasticity? These

questions remain unanswered. The hope is that revealing underlying

mechanism will dictate the therapeutic strategy to be taken. For

example, if glia exacerbate the central effects of stress then we should

attempt to limit astrocyte dysfunctions at specific therapeutic win-

dows. However, if astrocytes are neuroprotective in the context of

stress, as may be the case during brain injury (Anderson et al., 2016),

we should attempt to upregulate specific functions of these cells in

order to boost their neuroprotective (anti-stress) capacity.

It is clear that while the evidence for astrocyte dysregulation in the

context of mood and stress disorders is convincing, our understanding

of the (mal-)adaptations is limited. There are multiple animal models for

the study of stress disorders, each reproducing many physiological

aspects observed in human brain studies. As the burden of mental

health disorders increases worldwide, with little development of novel

therapeutic strategies, we must target glial cells in order to further

understand the biological underpinnings of these diseases and poten-

tially reveal novel therapeutic avenues. Currently prescribed antidepres-

sants, including SSRIs, seem to target astrocytes reversing gene and

protein expression changes associated with mood and stress disorders.

This appears to be a direct effect on these cells, as similar changes are

observed in isolated astrocytes in culture conditions. Further investiga-

tion into the mechanism by which SSRIs and other antidepressants

induce these astrocyte-specific effects may lead to the generation of a

new class of antidepressants directed toward these cells.

Astrocytes have also been implicated in early-life stress. Early life

stress models in which mothers and pups are given access to limited

amounts of bedding, result in impaired glutamate uptake by hypotha-

lamic astrocytes (Gunn et al., 2013). Maternal separation, another

early-life stress, impacts the number of astrocytes in the hippocampus

(Saavedra, Fenton Navarro, & Torner, 2017). Considering the role for

astrocytes in synapse formation and maturation (Allen et al., 2012;

Blanco-Suarez, Liu, Kopelevich, & Allen, 2018; Stogsdill et al., 2017),

impairment of astrocyte function at early stages of postnatal develop-

ment should have dramatic consequences on neuronal function. This

is one area that has the potential to expand immensely as we further

our understanding of astrocytic-mediated dysregulation of synapto-

genesis during development when animals are under duress.

The adoption of novel techniques and tools to investigate astro-

cyte function is critical if we are to further our understanding of the

roles of these cells in mood and stress disorders. This will occur

when current experts in the field begin to adopt these techniques or

when glial-focused researchers turn their attention to stress disor-

ders. There are now multiple tools available to control the activity of

astrocytes in a precise spatial and temporal manner; this includes

the chemogenetic and optogenetic manipulation of astrocytic sig-

naling (Adamsky et al., 2018; Agulhon et al., 2013; Jones, Paniccia,

Lebonville, Reissner, & Lysle, 2018; Mederos et al., 2019; Wang

et al., 2012), as well as a novel approach to decrease endogenous

astrocyte calcium activity by expressing a human plasma membrane

calcium pump, which extrudes calcium from the cell (Yu et al., 2018).

The use of these tools will greatly facilitate studies designed to bet-

ter understand the role of astrocytes in the initiation, development,

maintenance, or progression of stress disorders. Furthermore, we

now have the capacity to investigate this in a brain region specific

manner, isolating astrocytes embedded in specific “stress circuits.”

This will yield further information regarding astrocyte heterogeneity

with respect to stress sensitivity. Genetic targeting and deletion of

astrocytic hormone receptors will allow us to study the role played

by these glia in stress and depressive pathologies. Some candidates

of great interest are glucocorticoid receptors which are highly

enriched in astrocytes (Zhang et al. 2014) but information regarding

the functional relevance is lacking. Could activation of glucocorti-

coid receptors on astrocytes induce depressive-like phenotypes?

This is a rapidly developing and exciting field of research to

explore. The role of glia in mood and stress disorders is beginning to

pick up traction as the tools available to study these cells in detail

become more numerous. Future research is likely to implicate astro-

cytes in the molecular deficits contributing to behavioral phenotypes

associated with depression.
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